Categories
Programming

Integrate Testflight, Flurry and Corona SDK

Testflight

I use Testflight to coordinate pre-releases of software I develop for the iOS platform. Testflight is an amazing tool and I’m surprised Apple hasn’t bought the company yet. You simply create a group of people, send out invites and have them register their devices with Testflight. Unfortunately, the provisioning profile in the iOS ecosystem is a huge clusterf*ck, so you have to manually and not to mention painfully add these identifiers to your provisioning profile in the Apple Developer Portal.

When the profile is updated with the correct devices, you upload the .IPA to Testflight and add some release notes and hit send. The people participating in your beta release will then get an email that they can download a new version.

Testflight and Corona SDK

At work, we use the Corona SDK to develop multi platform games. Corona Labs describes their product as follows:

Corona SDK is the leading mobile development framework. Build high-quality apps and games for iOS, Android, Kindle Fire and Nook in record time.

It works remarkably well, not too much problems and it’s easy to deploy. Anyway, to integrate Corona SDK and Testflight you need to do a couple of things:

  • Build your software and generate the application and it’s zip file
  • Create a new folder called ‘Payload’ and move the application file into it
  • Compress that file and change its extension to .ipa instead of .zip
  • Upload the IPA to Testflight

Flurry

Screen Shot 2013-02-10 at 13.48.39
Flurry’s error log

Flurry is a great tool for gathering statistics, I’ve used it in all applications I’ve created for iOS and made sure its been used on Android as well. One of the best features for me as a developer is the fact that I get access to the crash reports (see the picture below).

To use Flurry with Corona, you use their analytics library.

-- Import library and initialize with personal application key 
require "analytics"
analytics.init( "YOUR_APP_KEY" )
-- Log event ID
analytics.logEvent( "Event ID" )

One thing I sometimes wish I would’ve implemented earlier in the project, is a log inside the app. The log should save the current state and the roadmap with the relevant server/client calls that took them there. It should also include the option to send this log to the developer.

2013-02-10 13.45.02
Evernote’s log

Evernote has implemented this very neat and it could be of tremendous help when debugging the communication between the server and the clients.

Categories
Programming

Game of Life implementation in Erlang

Background

The universe of the Game of Life is a two-dimensional grid of square cells, each of which is in one of two possible states, dead or alive. Each cell interacts with its eight neighbors, those cells that are horizontally, vertically, or diagonally adjacent. At each unit of time the following transitions occur:

  • Any living cell with fewer than two living neighbors dies, as if by under-population.
  • Any living cell with two or three living neighbors lives on to the next generation.
  • Any living cell with more than three living neighbors dies, as if by overcrowding.
  • Any dead cell with exactly three living neighbors becomes alive, as if by reproduction.

For an assignment at school, my classmate Jonatan and I were to implement this in Erlang.

Demonstration

This video demonstrates the finished game and two examples called a pulsar and a glider.

Source code

First off, here is the main program. If you would like some more information before seeing the code keep scrolling.

Data representation

The input to our program is represented as a list of {X,Y} tuples containing coordinates. Our internal data is represented as a single list using the indices of the list as a one-dimensional representation of the grid. This was chosen over representing the game and its input as multi-dimensional arrays for simplicity.

Note: the worst random access time of a list compared to an array is negligible as random access is only required once during the setup.

Each cell contains information about its coordinate, current state (dead or alive), list of its neighbors, and information about them such as number of living neighbors.

Synchronization

To keep our game in sync and avoid race conditions we use a “master” process to notify all cells when a new unit of time (tic) begins. Each cell responds by sending its current state to all of its neighbors then waits for its neighbors to send their current state. When all current states have been collected the new cell state is updated and drawn. This avoids synchronization issues by making sure all processes start at roughly the same time.

Source code for supporting files is available in this Gist.

To run the program:

c(ehtml). 
c(frame). 
c(gol).
gol:gol(40,40,[{5,4},{3,5},{5,5},{4,6},{5,6}]).

Open a browser and go to the URL http://localhost:8088/

Known bugs

The update rate for the browser is not in sync with the actual game update. This causes some irregular behaviour in the visualization of the game.

Summary

I would like to try to make a version of Game of Life in Node.js and see what advantages Node.js brings to the table in a GoL-implementation.

Categories
Personal

Using Disqus for comments

Yesterday I finished the transition for my comments on this blog to Disqus. Let me know if you find any errors.

On a side note, me and Pär H spent most of yesterday migrating all comments for another big site, unfortunately we had  70 000 spam comments in the system. Getting those into Disqus was a real treat. After unsuccessfully trying to run some sort of spam control on them, we decided to mark all comments as spam and go through the comments manually and approve those that weren’t spam.

Note to self, always use Akismet or something similar.